Semi-supervised regression based on support vector machine
نویسندگان
چکیده
منابع مشابه
Text Classification Based On Manifold Semi- Supervised Support Vector Machine
This article presents a solution along with experimental results for an application of semi-supervised machine learning techniques and improvement on the SVM (Support Vector Machine) based on geodesic model to build text classification applications for Vietnamese language. The objective here is to improve the semi-supervised machine learning by replacing the kernel function of SVM using geodesi...
متن کاملCost-Sensitive Semi-Supervised Support Vector Machine
In this paper, we study cost-sensitive semi-supervised learning where many of the training examples are unlabeled and different misclassification errors are associated with unequal costs. This scenario occurs in many real-world applications. For example, in some disease diagnosis, the cost of erroneously diagnosing a patient as healthy is much higher than that of diagnosing a healthy person as ...
متن کاملBudgeted Semi-supervised Support Vector Machine
Due to the prevalence of unlabeled data, semisupervised learning has drawn significant attention and has been found applicable in many realworld applications. In this paper, we present the so-called Budgeted Semi-supervised Support Vector Machine (BS3VM), a method that leverages the excellent generalization capacity of kernel-based method with the adjacent and distributive information carried i...
متن کاملLocality Preserving Semi-Supervised Support Vector Machine
Manifold regularization, which learns from a limited number of labeled samples and a large number of unlabeled samples, is a powerful semi-supervised classifier with a solid theoretical foundation. However, manifold regularization has the tendency to misclassify data near the boundaries of different classes during the classification process. In this paper, we propose a novel classification meth...
متن کاملSemi - supervised Least - squares Support Vector Regression Machines ★
In many real-world applications, unlabeled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilize such examples to boost the predictive performance. But previous research mainly focuses on classification problem, and semi-supervised regression remains largely under-studied. In this work, a novel semi-supervised regression method, semi-supervised LS-SVR (S2LS-SVR)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2014
ISSN: 1598-9402
DOI: 10.7465/jkdi.2014.25.2.447